Resonant phenomena in slowly perturbed rectangular billiards
نویسندگان
چکیده
We consider a slowly rotating rectangular billiard with slowly moving borders. We use methods of the canonical perturbation theory to describe the dynamics of a billiard particle. In the process of slow evolution certain resonance conditions can be satisfied. We study the phenomena of scattering on a resonance and capture into a resonance. These phenomena lead to destruction of adiabatic invariance in the system. 2001 Elsevier Science B.V. All rights reserved. PACS: 03.20.+i; 05.45.+b
منابع مشابه
Nonpersistence of Resonant Caustics in Perturbed Elliptic Billiards
Caustics are curves with the property that a billiard trajectory, once tangent to it, stays tangent after every reflection at the boundary of the billiard table. When the billiard table is an ellipse, any nonsingular billiard trajectory has a caustic, which can be either a confocal ellipse or a confocal hyperbola. Resonant caustics —the ones whose tangent trajectories are closed polygons— are d...
متن کاملFermi acceleration and adiabatic invariants for non-autonomous billiards.
Recent results concerned with the energy growth of particles inside a container with slowly moving walls are summarized, augmented, and discussed. For breathing bounded domains with smooth boundaries, it is proved that for all initial conditions the acceleration is at most exponential. Anosov-Kasuga averaging theory is reviewed in the application to the non-autonomous billiards, and the results...
متن کاملElectric circuit networks equivalent to chaotic quantum billiards.
We consider two electric RLC resonance networks that are equivalent to quantum billiards. In a network of inductors grounded by capacitors, the eigenvalues of the quantum billiard correspond to the squared resonant frequencies. In a network of capacitors grounded by inductors, the eigenvalues of the billiard are given by the inverse of the squared resonant frequencies. In both cases, the local ...
متن کاملPeriodic orbits and semiclassical form factor in barrier billiards
Using heuristic arguments based on the trace formulas, we analytically calculate the semiclassical two-point correlation form factor for a family of rectangular billiards with a barrier of height irrational with respect to the side of the billiard and located at any rational position p/q from the side. To do this, we first obtain the asymptotic density of lengths for each family of periodic orb...
متن کاملLogarithmic contribution to the density of states of rectangular Andreev billiards
We demonstrate that the exact quantum mechanical calculations are in good agreement with the semiclassical predictions for rectangular Andreev billiards, and therefore for a large number of open channels it is sufficient to investigate the Bohr-Sommerfeld approximation of the density of states. We present exact calculations of the classical path length distribution P(s), which is a nondifferent...
متن کامل